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Summary 

A mathematical model has been developed for simulating the operation of a system for the 
protection of chemical reactors against runaway reactions, which is based on containment and in 
situ quenching with an inert diluent. 

The model has been evaluated with physical and chemical data taken from the literature. The 
early detection of the runaway and the allowance for a suitable gaseous freeboard are the two main 
factors to be considered. 

In the case examined, which may be considered representative of a large number of real cases, 
the protection of the reactor appeared possible with reasonable values of the two above mentioned 
factors. 

List of symbols 

AB 
c 
D 
E 
F 
H 
k 
M 
P 
R 
T 
V 
X 
Y 

constants in the vapour pressure equation 
heat capacity, kJ kg-l K-’ 
density, kg me3 
energy, kJ mol-* 
degree of filling 
enthalpy, kJ kg-l 
pre-exponential factor, s-l 
mass, kg 
pressure, MPa 
gas constant, kJ mol-’ K-’ 
temperature, K 
volume, m3 
degree of conversion 
weight fraction of solvent in the gaseous phase 

Greek symbols 
79 dimensionless temperature 
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P dimensionless mass 
V reaction order 
7l dimensionless pressure 

P dimensionless density 
z dimensionless time 
X dimensionless group 
Y functions 

Subscripts 
A actuated 
AC activation 
C characteristic 
E explosion 
F final 
G gaseous phase 

L liquid phase 
0 initial 
R reactant, reaction 
S suppressor 
V vapour, vaporization 

Introduction 

The safe operation of chemical plants requires, inter da, effective measures 
for the protection of chemical reactors against the effects of explosions gen- 
erated by runaway reactions. In the past decade a great deal of work has been 
carried out on this subject [ 1,2]. 

The different aspects of the runaway were considered and recommendations 
were proposed to take into account the boiling of the liquid phase, the venting 
of two-phase flashing mixtures and the disposal of the effluents. At present, 
this work cannot be easily turned into simple design procedures, because of the 
lack of detailed knowledge on the physical and chemical phenomena involved, 
which are often very complex and not easily arranged into a general frame- 
work. However, the relevant results are very useful to attempt the simulation 
of the runaway by means of mathematical models, which should be used to 
support the experimental work and the design procedures [3--S]. 

Most information is available on the problems relating to the sizing of the 
bursting disc. Irrespective of its importance, the disposal of the effluents at- 
tracted the attention of the researchers to a smaller extent. Nevertheless, if 
the quenching effect of the depressurization is unable to nullify the chemical 
reactivity, a pressure and shock resistant blow-down system must be provided. 
Moreover, the catchtank must be suitably sized to hold the vessel contents and 
the required amount of suppressor. This is particularly the case of toxic and/ 
or flammable effluents which of course cannot be directly discharged into the 
sewer [9]. 

These requirements result in a cost for the blow-down system which can 
represent a not inconsiderable fraction of the total cost of the reactor. There- 
fore, an alternative method of protection, based on the containment of the 
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explosion and on the inerting in situ of the reactive mixture through the injec- 
tion of a suitable amount of inert diluent, should be considered at least when 
very dangerous chemicals are handled. 

In the study presented in this paper a lumped-parameter mathematical model 
was developed and run, using a realistic set of physical and chemical data [lo], 
to assess the effectiveness of the proposed protection system. 

Mathematical model 

The model is written with reference to a batch reactor, partially filled with 
a liquid phase, in which a non-gassy runaway reaction occurs. The gaseous 
phase mainly consists of vapours of the liquid solvent, whereas the allowance 
for a small amount of inerts makes the initial pressure independent of the 
initial temperature. The conservative hypothesis of adiabaticity is assumed. 
Therefore, no true steady-state is possible and any state of the system is con- 
sidered stable if the relevant explosion delay (lag-time) assumes a suitably 
high value. 

The time evolution of the runaway is described by a system of three ordinary 
differential equations (ODES), written for the three main variables, namely 
the degree of conversion, the temperature and the vaporized mass. Two differ- 
ent periods can be singled out. The first period lasts from the starting time to 
the time at which the suppression system is actuated. This system is active 
until the temperature attains a safe value TF -C T,, (to be defined later) or al- 
ternatively, until the reactor is almost entirely filled with the liquid phase. In 
the first instance, the inerting was successful. 

In addition to the main variables, the following secondary variables are 
introduced: 
a) the mass of the gaseous phase, given by 

M,=M,,+M, (1) 

b) the mass of suppressor discharged into the reactor, which is obviously set 
equal to zero during the first period. During the second period it is assumed 
that 

Ms = (dM,/dt) x (t-ta) (2) 

where the suppressor flow rate is treated as a constant input variable. For t > tF, 
the mass of suppressor is kept constant at the value 

MsF = (dJJs/dt) x (~-LA) (3) 

c ) the mass of liquid solution. From a simple mass balance one obtains 

MI, = MI,o - Mv + MS (4) 
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d) Introducing the liquid-phase density, DL, the volume taken up by the liquid 
phase yields 

V L =MLlDL (51 

e) the total pressure, given by 

P=P,X(MoIMo,)X(T/T,)X tvcxll(v-vL)) (6) 

f) the vapour pressure of the solution. Since only the constant-volatility case 
is considered, a simple exponential relationship holds 

PL=exp(A--B/T) (7) 

in which A and B are independent of the liquid-phase composition. 
g) the solvent mass fraction in the gaseous phase is given by 

Y= (Mv + YOM,,) /Mo (8) 

The system of ODES consists of the following three equations: 
a) kinetic equation 

A simple runaway reaction of Arrhenius-type kinetics and order v in the 
mass fraction of the reactant is assumed. With the usual definition of degree 
of conversion 

X= (MHO - MR)IMRO (9) 

it results 

dX/dt=Irzxexp( -E,c/RT) x (MRO/ML)y-l~ (1-X)’ 

b) energy balance equation 

(10) 

In the hypothesis of adiabaticity, the energy balance reads 

+dH,(dM,ldt)+C,(T--T,)(dM,/dt) (11) 

where Ts is the inlet temperature of the suppressor. Obviously, the last term 
at the righthand side is set equal to zero when the suppression system is inactive. 
c ) equilibrium equation 

The usual Raoult equation 

YP=PL (12) 

is used to model the liquid-vapour equilibrium for the solvent. This equation 
holds in the hypothesis that the mass fraction of the solvent in the vapour 
phase is essentially equal to its mole fraction. This simplifying hypothesis avoids 
the introduction of two more parameters (i.e. the molecular weights of both 
solvent and inerts), whose effect is certainly very small. 

Equation (12) is used in the model in its differential form 



Y(dP/dL) +P(dY/dt) =d.P,/dt (13) 

where the secondary variables P, PL and Y and their derivatives are written as 
explicit functions of the main variables through the relevant equations of 
definition. 

The initial conditions for the main variables are obviously 

at t=O, X=0, Mv=O, T=T, (141 

whereas the initial values of the secondary variables are conveniently fixed in 
connection with the definition of the dimensionless variables 

8= T /To, p=M/Mc, n=P/P,, p=D/Dc, z= t/tc (151 

A suitable definition of the characteristic mass is given in terms of the char- 
acteristic density, which is assumed equal to the initial value of the gaseous- 
phase density. Therefore 

Mc=DcV (16) 

The initial values of the dimensionless masses in the reactor can now be de- 
fined in terms of the initial degree of filling 

F= v,,/ v (17) 

as 

pco=l-F (18) 

AA, =~LF (19) 

The definition of the characteristic time follows from the dimensionless ki- 
netic equation, which can be written as 

~==/dr=exp(XAc(~-l))~)~~-V(l-X)V=V/l 

where 

XR = MRoIMu, 

XAC =EAC/RTO 

and 

(20) 

(21) 

(22) 

tc = (xRPLF)~-“I(~ exp(xAc) 1 (23) 

With a similar procedure, the dimensionless equation of energy balance is 
written as 

(y2&+Iy3jL”+v/4--.ri=o 

where B= d8/dz, bv = dpv/ds and 

(24) 
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ry, = To ( GPI, + CGPU, ) /DEN (25) 

I/I:\ = AHv /DEN (26) 

~u~=T~GW--S),&/DEN (27) 

with 

DEN =~riM’( --Htz) (23) 

Finally, the dimensionless equation of equilibrium is derived from eqn. (13) 
in the form 

~5 = ( YPLPC,) /DEN - ~xvJ6~ 

f&$=77(1--F)(l- %I)/(,& + 1--F)2+ 

+ Y&V 1 - p&DEN ) /DEN 

w = YPL,& Wv /DEN’ 

and 

DEN =/+_ - ,ur, 

In these equations, the following dimensionless variables are used 

77 = (PI&o 79) / (PI, - IUL ) 

~=exp(x~ -xdW 

with 

xv1 =A-ln(P,) 

xv? = B/T, 

and 

Y= ( Pv + YnPo0) /PUG 

with 

Y, = n1,, = PLOlPll 

(29) 

(30) 

(31) 

(32) 

(33) 

(34) 

(35) 

(36) 

(37) 

(33) 

(39) 

An explicit form of the system (20) (24) (29) can be easily derived and 
integrated using a fourth-order Runge-Kutta method and the initial conditions 

at 7=0, X=0, Q=l, pv =O (40) 
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Results and discussion 

The model described in the previous Section was developed in order to obtain 
the most simple, non trivial picture of the runaway in a batch reactor. Even if 
many details (e.g. fluid dynamic phenomena) were omitted, the number of 
parameters to be considered is so high that an exhaustive analysis of sensitivity 
would be very complex and essentially meaningless. Therefore, the model was 
run using the physical and chemical properties of the phenol-formaldehyde 
system, used in the manufacture of phenolic resins and studied by Booth et al. 
[lo]. The input data used are reported in Table 1. 

A first set of results, shown in Figs. 1 to 3, refers to the runaway in absence 
of any protection system. The dimensionless temperature is plotted against 
the dimensionless time in Fig. 1, for different values of the initial temperature. 

TABLE 1 

Input data used 

C,. = 2.90 kJ kg-’ K-’ 
cc: = 1.88 kJ kg-’ K-’ 
AH, = 2503 kJ kg-’ 
D,. = 1024-0.673 T ("C) kg m-” 
- AHI, = 2.7 GJ kg-’ 
k = 7.95 lo8 s-’ 
EN. = 103 kJ mol-’ 

;<, 
= 2 
= 0.1013 MPa 

F,, = 0.824 
x:: = 0.156 
A = 11.47 
B = 5133 K-’ 
fis = 50,000 
CS = 4.18 kJ kg-’ K-’ 

a b c d 

IF- 

1.3 - 

1.2 - 

I I, I I I, 
0 0.05 01 z 

Fig. 1. Pimensionless temperature 8= T/T,, against the dimensionless time T= t/k for different 
values of the initial temperature i”,,. (a) T,=3O"C; (b) T,,=5O"C; (c) T,=7O"C; (d) To=9O”C. 
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Fig. 2. Explosion delay & (s) against the inverse of the initial temperature T,, (K), for three 
different values of the concentration ratio &=MRO/Mt, (a) XR =&/2; (b) XR =&; (c) X=2&. 

Fig. 3. Dimensionless pressure z=P/P, against the dimensionless temperature 8= T/To, for dif- 
ferent values of the initial temperature To. (a) T,=9O”C; (b) To=70”C; (c) To=50”C; (d) 
T,,=3O”C. 

All the curves start with a quasi-zero derivative, which dramatically increases 
just before the “explosion time”, No significant effect of the reactant con- 
sumption is observed in the case examined, because of the rather high reactiv- 
ity of the system considered. 

This sharp increase of temperature allows the accurate evaluation of the 
explosion delay tn. On the other hand, its evident drawback is the difficulty in 
early detecting the runaway from temperature measurements. In fact, the most 
up-to-date detection systems are rather complex devices, which use the com- 
puted values of the first and the second time derivative of the temperature 
[ 11,121. 

On increasing the initial temperature, the dimensionless explosion delay in- 
creases. The anomaly is only apparent, and depends on the values assumed by 
the characteristic time (eqn. 23), which is a strongly decreasing function of 
To_ As a consequence, the dimensional explosion delay decreases on increasing 
To according to the expected logarithmic law, as shown in Fig. 2. Moreover, the 
plotted data show that the dimensional explosion delay is a decreasing function 



of the initial concentration of the reactant, expressed by the dimensionless 
group xR (eqn. 21). 

From the data plotted in Fig. 2 the safe temperature TF can be defined as the 
temperature which corresponds to explosion delays high enough to allow the 
standard shut-down operations. This choice is in some respects arbitrary, but 
a value of TF is in any case required to evaluate the performance of the suppres- 
sion system. 

The early detection of the runaway is essential for attaining an effective 
operation. It can be observed that the exponential dependence of the vapour 
pressure on temperature makes the relative pressure increase during the run- 
away much higher than the corresponding temperature increase, as shown by 
the curves n (19)) plotted in Fig. 3 for different values of the initial temperature. 
In particular, the discussed effect appears more notable at the higher values of 
T,,, i.e. when the explosion is more severe, because of the smaller values of the 
explosion delay. 

This observation favours a detection procedure based on pressure measure- 
ments. In practical applications, however, different criteria (e.g. the sensitivity 
and reliability of the sensor) determine the choice of the detection system. 
Here, it appeared more suitable to use the pressure of actuation (instead of the 
temperature) to define the time of actuation. 

The analysis of the performance of the suppression system can now be at- 
tempted. In addition to the chemical andphysical properties fixed at the values 
reported in Table 1, suitable values were assigned to the safe temperature 
( Tr= 60” C), the initial temperature (T 0 =80 o C ) , and the inlet temperature 
of the suppressor (Ts = 10°C). The chosen safe temperature gives an explosion 
delay (more than two hours) much greater than that corresponding to the 
initial temperature (about 15 minutes). The reduction of the concentration of 
the reactant, which occurs during the runaway, gives a further safety margin. 

The first tests were performed using the value of the filling ratio reported by 
Booth et al. (i.e. F=F,=0.824). The suppression system appeared unable to 
protect the reactor, whatever the values assigned to the pressure of actuation 
and to the flow rate of suppressor. In fact, the volume available in the reactor 
for the assigned value of F is too small to hold the mass of suppressor necessary 
to decrease the temperature from the initial to the safe value. 

The tests carried out for smaller values of the filling ratio showed that the 
effect of zA and fis is much smaller than the effect of F. In fact, the pressure of 
actuation determines the t,emperature attained by the system at t= tA, but its 
effect is small because, in the range examined, it always results 
TA - T, K T,, - Ts_ On the other hand, the flow rate of suppressor only deter- 
mines the length of the suppression period, with only a negligible influence on 
the total mass of suppressor discharged. 

On the contrary, the runaway is dramatically affected by the filling ratio. On 
decreasing F, two different behaviours are observed, as shown in Fig. 4. Curve 
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0 250 500 750 t,s 

Fig. 4. Dimensionless pressure n= P/P, during the runaway for two values of the filling ratio F. 
(a) F=O.W,,; (b) F=0.6Fo. 

Fig. 5. Maximum dimensionless pressure 7~ against the dimensionless pressure of actuation 7cA 
for different values of the filling ratio F. (a) Fz0.7; (b) F~0.6; (c) F=0.5; (d) F=0.4 

(a) refers to F= 0.8 FO. The suppressor produces an almost linear decrease of 
temperature (not shown) and a non-linear decrease of pressure, explained by 
the decrease of the vapour pressure. Successively, the pressure increases again, 
because of the decrease of the volume’available for the gaseous phase. The 
maximum pressure, attained at t= tr, is noticeably greater than 7tA. 

At lower values of F (i.e. F=0.6F0, curve b), the pressure monotonically 
decreases during the suppression period, resulting in zF -C n_&. In both cases, the 
“maximum pressure” is almost independent of the suppressor flow rate and 
only slightly affected by the pressure of actuation. 

The maximum pressure represents a simple measure of the effectiveness of 
the suppression system. Therefore, the computed values of zF were plotted as 
a function of zA, for different values of F (Fig. 5). The data show that the 
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maximum pressure increases on increasing the pressure of actuation; more- 
over, the greater the value of F, the greater the effect of zA. In the high left 
corner, the dashed zone indicates the dominion in which no protection is pos- 
sible, because the suppressor is unable to reduce the temperature down to the 
safe value, irrespective of the pair zA, F. 

Conclusions 

The comparison between these results and the performance of a venting 
system [ 101 shows that the proposed system requires smaller values of both 
nA and F. However, this work demonstrates that a safety device based on con- 
tainment and in situ inerting is feasible for the protection of chemical reactors 
against runaway reactions, at least in the case examined (vapour pressure tem- 
pered and non-gassy systems). The proposed approach could be extended to 
evaluate the feasibility of such devices in different cases. 

Still within the limits of the simplified analysis proposed, it clearly appears 
that two main factors determine the effectiveness of this device, namely the 
early detection of the runaway and the allowance for a suitable gaseous free- 
board, i.e. the use of filling ratios smaller than usual. 

The early detection of the runaway can be accomplished through the devel- 
opment of suitable software for the real-time analysis of measured data on the 
state of the system, whereas the allowance for a larger freeboard essentially 
results in an increase of the costs. However, these costs must be compared with 
the costs of a complete and reliable blow-down system. 

Such an analysis is beyond the scope of this paper but the discussed results 
clearly show that the economic feasibility of the proposed system deserves fur- 
ther consideration, particularly in the case of toxic and/or flammable effluents. 
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